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We have measured the quantum-Hall activation gaps in graphene at filling factors � � 2 and � � 6 for
magnetic fields up to 32 T and temperatures from 4 to 300 K. The � � 6 gap can be described by thermal
excitation to broadened Landau levels with a width of 400 K. In contrast, the gap measured at � � 2 is
strongly temperature and field dependent and approaches the expected value for sharp Landau levels for
fields B> 20 T and temperatures T > 100 K. We explain this surprising behavior by a narrowing of the
lowest Landau level.
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The quantum-Hall effect (QHE) observed in two-
dimensional electron systems (2DESs) is one of the fun-
damental quantum phenomena in solid state physics. Since
its discovery in 1980 [1] it has been important for funda-
mental physics [2] and application to quantum metrology
[3]. Recently a new member joined the family of 2DESs:
graphene, a single layer of carbon atoms [4–8]. Graphene
displays a unique charge carrier spectrum of chiral Dirac
fermions [9,10] and enriches the QHE with a half integer
QHE of massless relativistic particles observed in single-
layer graphene [11–14] and a novel type of integer QHE of
massive chiral fermions in bilayers [15,16]. Moreover, the
band structure of graphene even allows the observation of
the QHE up to room temperature [17]. Since localization in
conventional quantum-Hall systems is already fully de-
stroyed at moderate temperatures, no QHE has been ob-
served at temperatures above 30 K until very recently.
Therefore, understanding a room temperature QHE in
graphene goes far beyond our comprehension of the tradi-
tional QHE.

In order to access this intriguing phenomenon in more
detail, we report here systematic measurements of the
inter-Landau-level activation gap in graphene for magnetic
fields up to 32 T. We will show that the gap between the
zeroth and the first Landau level approaches the bare,
unbroadened Landau-level separation for high magnetic
fields and we explain these findings by a much narrower
lowest Landau-level compared to the other ones. In con-
trast, for higher Landau levels, the measured activation gap
behaves as expected for equally broadened states.

The single-layer graphene samples [Fig. 1(c)] were
made by the micromechanical exfoliation of crystals of
natural graphite, followed by the selection of single-layer
flakes using optical microscopy and atomic force micros-
copy [4,5]. A large enough single-layer flake is contacted
by Au electrodes and patterned into a Hall bar by e-beam
lithography with subsequent reactive plasma etching. The
structures are deposited on a SIMOX substrate with a

300 nm thick SiO2 layer on top of heavily doped Si. The
Si is used as a backgate allowing to tune the carrier con-
centration n to either holes (n < 0) or electrons (n > 0)
with a mobility � � 15 000 cm2�V s��1 at 4.2 K. Because
of the presence of surface impurities on the graphene sheet
[18], the devices are generally strongly hole doped with a
charge neutrality point situated at a positive back-gate
voltage. In order to restore a pristine undoped situation
we anneal our samples at 390 K during several hours prior
to any experiment, thereby removing most of the impuri-
ties and placing the charge neutrality point as close as
possible to zero gate voltage [7].

Electrons in graphene behave as chiral Dirac fermions
with a linear dispersion E � c@jkj, where c � 106 ms�1 is
the electron velocity [10]. In a magnetic field the energy
spectrum splits up into nonequidistant Landau levels
[Fig. 1(a)] with energies given by [11–14].

 EN � sgn �N�
�����������������������
2@c2eBjNj

q
: (1)

N is a negative integer value for holes and positive for
electrons. The N � 0 Landau level is shared equally be-
tween both carrier types.

In Fig. 1(b) we have plotted the Hall resistivity �xy as a
function of the magnetic field for a hole-doped device (n �
�1:0� 1012 cm�2) at T � 4:2 K and at room temperature
(RT). At 4.2 K pronounced plateaus, accompanied by zero
longitudinal resistivity, are visible in �xy at values of �xy �
�h=e2�, with � � �2 and � � �6. At B � 21 T (� �
�2) the Fermi energy is situated on the localized states
between the zeroth (N � 0) and first (N � �1) Landau
level of the holes [see Fig. 1(a)]. All levels below the Fermi
energy are now completely filled and �xy is quantized to
h=2e2. When sweeping the magnetic field downwards
more Landau levels become populated and � � �6 is
reached at B � 7 T. The Fermi energy now lies between
the first (N � �1) and the second (N � �2) Landau level
and �xy is quantized at h=6e2.
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The quantization of the Hall resistance, especially at
room temperature, can be seen most clearly by varying
the carrier concentration at the highest possible magnetic
field. This is shown in Fig. 1(d) and 1(e) for B � 30 T,
where we plot the Hall conductivity �xy and the conduc-
tivity �xx as a function of the applied gate voltage at 4.2 K
and RT. The conductivity tensor � was calculated by
inverting the experimentally measured resistivity tensor
�. The corresponding quantum-Hall plateaus for holes
(� � �2) and electrons (� � 2), accompanied by minima
in �xx, are quantized to �xy � �2e2=h and remain visible
up to RT.

It is interesting to note that the low-temperature data
shown in Fig. 1(e) demonstrate a splitting of the conduc-
tivity maximum around the charge neutrality point which
disappears at higher temperatures. As reported previously
[6,19], this observation may be explained as a Zeeman
splitting of the order of a few Kelvin [6] or the presence
of counterpropagating edge channels dominating the resis-
tivity �xx [19]. Additionally, a spontaneous spin and/or

valley polarization due to SU�4� quantum-Hall ferromag-
netism was suggested [20], possibly explaining the disap-
pearance of the splitting at higher temperatures with a
crossing of the Curie temperature. Whether such a polar-
ization survives up to the high temperatures with a value of
the splitting smaller than the thermal energy is still subject
of scientific debate and goes beyond the scope of this work.
For completely filled Landau levels, however, as we con-
sider in the rest of this Letter, no spontaneous polarization
takes place and no interaction induced splitting is expected.

To determine the energy gaps we have measured �xx as a
function of the carrier concentration at a constant magnetic
field (5 to 30 T in steps of 5 T) and at different temperatures
between 4.2 K and RT. Typical results for B � 15 T are
shown in Fig. 2. At this intermediate field all the minima
already display a clearly visible temperature dependence.
At the highest field (30 T) the � � 2 minimum remains
close to zero for all temperatures [see Fig. 1(e)]. The value
of the minima in the longitudinal resistivity starts to de-
viate from zero with increasing temperature and the
quantum-Hall plateaus become less pronounced. Clearly,
the � � �2 minimum is much more robust at higher
temperatures than the � � 6 minimum, which is also the
case for the related quantum-Hall plateaus.

The value of the resistance minima at � � 2 and � � 6
as a function of the inverse temperature for different mag-
netic fields are shown in Fig. 3(a) and 3(b), respectively
[21]. From the slope in these Arrhenius plots,

 �xx / exp���a=kT�; (2)

we deduce the activation gap �a. All data for T � 100 K
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FIG. 2 (color online). Resistivity �xx as a function of carrier
concentration at B � 15 T for different temperatures. The ar-
rows mark the � � �2 and the � � 6 minima.
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FIG. 1 (color online). (a) Schematic Landau-level structure in
graphene. The white areas are extended states in the center of the
Landau levels, with the localization radius of order of the sample
size; the gray areas represent localized states in between. The
arrows indicate the position of the chemical potential for the
corresponding filling factor. (b) Hall resistivity �xy for holes in a
single-layer graphene device as a function of the magnetic field.
The traces were recorded at 4.2 K (blue, solid line) and RT (red,
dashed line) at a fixed gate voltage corresponding to a carrier
concentration n � �1:0� 1012 cm�2. (c) Scanning electron
micrograph of the graphene multiterminal device. Hall conduc-
tivity �xy (d) and conductivity �xx (e) at 4.2 K (blue, solid line)
and at RT (red, dashed line) as a function of the gate voltage at
B � 30 T.
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can be reasonably fitted with a single Arrhenius exponent.
For T < 100 K, in particular, for � � �2, the Arrhenius
plots flatten off significantly, an effect normally attributed
to variable-range hopping [22,23].

In Fig. 3(c) we show the results of the measured gaps
and compare them to the bare Landau-level separation as
given by Eq. (1). Gaps for � � �2 were obtained using a
similar Arrhenius analysis as in Fig. 3(a), yielding very
comparable results as for the gaps at � � 	2. However,
due to a leakage current through the gate insulator for too

negative gate voltages, � � �2 moves beyond experimen-
tal reach for B> 20 T.

The experimental values for � � 6 show a constant
offset of
400 K from the ideal curve, which can straight-
forwardly be explained by a corresponding finite Landau-
level width [24].

In contrast, the � � �2 gap behaves strikingly different.
At low magnetic fields a lower value than expected for an
ideal system is measured, but for high magnetic fields the
measured gap approaches the bare Landau-level separa-
tion. Since the results at � � 6 show that the N � 1
Landau level behaves as expected, this peculiar behavior
at � � �2 can only be explained by the unique nature of
the N � 0 Landau level shared equally between electrons
and holes of opposite chirality.

In order understand this behavior in more detail we have
to consider that the measured activation gap is determined
by the distance from the chemical potential to the con-
ductivity edges of the two adjacent Landau levels. When
these levels have considerably different mobilities or
widths (a case normally not encountered in traditional
QHE samples), this gap will be dominated by the distance
of the Fermi energy to the nearest Landau level with the
highest mobility minus half its width. Therefore, in our
case the conductivity around � � 2 is dominated by ther-
mal excitation to the N � 0 Landau level since the peak
conductivity measured in density sweeps is considerably
larger for the N � 0 Landau level than for N � 1 [see
Fig. 1(e)]. In particular, when this level is narrow enough,
the high field excitation gap then just reflects the bare
Landau-level separation.

Such a narrowing of the lowest Landau level is also
supported theoretically by the following arguments: a ma-
jor source of disorder in graphene can be tracked down to
its corrugated (rippled) surface structure [25–28] leading
to random fluctuations of the perpendicular magnetic field
and, as a consequence, a considerable broadening of higher
Landau levels. The zero-energy level, however, is excep-
tional in this sense. It is topologically protected by the so-
called Atiyah-Singer index theorem, such that the number
of states with zero energy is only determined by the total
magnetic flux through the system and does not depend on
whether this field is uniform or not [8,11]. Therefore, the
fluctuations of the vector potential caused by ripples are
not able to broaden this zero-energy state. The special
nature of this state is most pronounced in high magnetic
fields where the lowest Landau level is well separated form
the neighboring levels; for lower fields Landau-level mix-
ing can broaden the lowest Landau level by means of inter-
Landau-level scattering.

For a more quantitative analysis we estimate the density
of states in the higher Landau levels N � 1 and N � 2
from the measured resistivity as a function of concentra-
tion. Identifying localized states with a zero low-
temperature resistivity �xx and extended states with non-
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FIG. 3 (color online). Arrhenius plots of �xx in the high
temperature range for the gaps at � � 2 (a) and at � � 6 (b)
for different magnetic fields. (c) Energy gaps 2�a between two
Landau levels as a function of magnetic field for � � 	2 (full
red triangles), � � �2 (open black circles), and � � 6 (full blue
squares) as deduced from the Arrhenius plots. The dashed (red)
and dotted (blue) lines are the theoretically expected energy gaps
for sharp Landau levels. The inset shows schematically the
density of states for a sharp zeroth Landau level and broadened
higher Landau levels for electrons and holes at 30 T. The form
and width of the higher Landau levels were extracted from
experimental data. Extended states are represented by the white
areas, localized states by the dashed areas.
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zero �xx we find that the number of localized states be-
tween the first and second Landau level is about 2.5 times
the number of extended states in one of the levels.
Knowing the width of the extended states � � 400 K, as
deduced above, the form of the first and second Landau
level is fully determined and quantitatively sketched in the
inset of Fig. 3(c).

Using this density of states for the N � 1 level and a
sharp N � 0 level allows us to calculate the field and
temperature dependence of the chemical potential �F at
� � �2 using standard Fermi statistics. Above 100 K and
in high magnetic fields �F is found to be near the middle of
the gap. The conductivity at � � �2 is then dominated by
thermal excitation to the N � 0 Landau level (with the
highest mobility) which amount to half the Landau-level
distance, a value we indeed measure experimentally. These
findings also agree with our Arrhenius plots in Fig. 2 with a
well-defined single slope for T > 100 K.

Interestingly, our proposed scenario of an asymmetric
density of states around � � 2 also implies a reduction of
the Arrhenius slope for T < 100 K. It forces the Fermi
energy �F to move from a midgap position closer towards
the lowest Landau level. This effect indeed reduces the
low-temperature activation energies and is independent
from other effects such as variable-range hopping which
can play a similarly important role for the reduction of the
measured gaps.

Finally, we note that the measured gaps are extremely
sensitive to background doping from surface impurities.
Exposing the sample to air, hereby absorbing surface im-
purities, induces extra doping and considerably reduces the
measured gaps. In particular, a narrowing of the lowest
Landau level can no longer be observed. This statement is
also confirmed by the fact that the strong temperature
dependence of the � � 2 gap disappears for a system
with surface impurities.

In conclusion, we have measured the excitation gaps at
� � �2 and � � 6 in graphene. We have shown that the
results for higher Landau levels can be described quanti-
tatively by thermal activation to broadened Landau levels
with a large Landau-level width � � 400 K for the sample
investigated. The lowest Landau level, however, becomes
very sharp with increasing magnetic field, and the gap
approaches the bare Landau-level splitting.
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